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In contrast to the well-studied detonation of homogeneous mix- 
rares [1], detonation occurring in heterogeneous systems (for example, 
when a fuel is deposited in the form of a film on the wails of a pipe 
containing a gaseous oxidizer) has received little attention. Experi- 
ments have demonstrated the following characteristic properties of de- 
tonation in heterogeneous systems [2-4]. 

1) The propagation velocity of the detonation wave is a phys- 
icochemical constant of the mixture. 

2) The structure of the detonation wave has a strictly periodic 
character, associated with the nonstationary mechanism of sustain- 
ment of the leading (primary) shock wave by secondary shock waves 
formed by the explosions that occur periodically in the detonation 
w a v e .  

Whereas the first property of a heterogeneous detonation is 
shared by a homogeneous detonation, the second is one of its distin- 
guishing features. The basis of the classical Chapman-louguet-Zel'do- 
vich-Neurnann detonation theory is the assumption that the process is 
one-dimensional and stationary. With respect to a heterogeneous de- 
tonation it is also of interest to formulate some ideal nomtationary 
detonation models. This paper describes a very simple model of a de- 
tonation of this kind, which makes it possible, in an idealized case, 
to take into account the energy losses caused by the essentially- non- 
stationary character of the process. 

!. We will make the usual assumptions: a) the process is one- 
dimensional; b) heat losses through the walIs of the pipe, ioss of mo- 
mentum due to friction against the wall, incomplete combustion, etc.,  
are neglected. 

Let the detonation wave be situated between the sections 0-0 
and 1-1. The section 0-0 corresponds to the primary shock; there are 
no chemical reactions beyond section 1-1. The detonation wave moves 
with mean velocity D. 

We will consider the foUowing detonation model. A point ex- 
plosion of intensity q occurs strictly periodically (with period T) in 
the section 1-1. This explosion produces two secondary shock waves, 
one of which overtakes the primary shock, while the other moves down- 
stream away from the detonation wave. We assume that heat release 
as a result of the chemica! reaction occurs on!y in the section 1-1, 
whiie there is no reaction in the rest of the detonation wave. As a re- 
sult of interaction of the primary and secondary shocks, a more powerful 
leading primary wave is formed whose velocity increases and then de- 
ere~es to its former value, then again experiences some increase under 
the influence of the shock wave from the next explosion, and so on. 
The flow pattern in such a nomtationary detonation wave is extremely 
complex because interaction of the primary and secondar] shoclu also 
produces a tangential discontinuity and a weaker shock wave (or rare- 
faction wave) moving counter to the next secondary shock. A periodic 
regime is established in the detonation wave after an infinitely long 
time. The considered periodic flow pattern m o v e s  with some mean 
velocity D. 

We now reverse the flow. We assume that in the new coordinate 
system the section 1-1 is at rest and the flow is incident on the de- 
tonation wave with velocity D. The section 0-0  will experience peri- 
odic oscillations about some mean position. 

We observe the flow for a very long time ~'(v >> T) and as- 
s~ame that on the average the flow in the detonation wave is stationary 
in time. Then in some approximation we can write the principal laws 
of conservation of mass, momentum and energy m the form 

p0D = p (D- -u ) ,  p o D ~ - - p ( D - - u ) ~ = p - - p o ,  

D 2 q -2 ul)'. 
i0 + ~ -  + 2~-.D~ = a + (D (1) 

Here p, p, u, and i are the pressure, density, flow velocity rela- 
tive to the pipe, and the heat content of unit mass of flow, respective- 
ly, averaged in time and over the cross section of the pipe. The sub- 
script 0 corresponds to :the freestreamparameters and the subserip~ 1 
to the flow parameters in the section 1-1. 

The 2 in the denominator of the term with q appears because 
only half the heat released in the explosion is expended in the volume 
between the sections 0-0 and 1-1; the other half is carried downstream 
together with the shock waves (in the case of a point explosion the 
energy of the explosion is obviously distributed symmetrically relative 
to the site of the explosion). 

We will accept the following basic hyporhasis, the analogue 
of the Chapman-Jouguet hypothesis in stationary detonation. The mean 
detonation velocity relative to the mean flow velocity in the section 
1-1, where explosions occur periodicalIy, is equal to the mean local 
speed of sound 

D - - u l = a ~ .  (2) 

The latter hypothesis can be supported by the usual consider- 
ations of hydrodynamic stability and the detonation mechanism [1] 
if it is taken into account that only half the chemical energy is ex- 
pended in the detonation wave and the other half is expended on the 
far greater mass of matter (theoretically infinitely great) situated be- 
yond the detonation wave. 

Using the system of equations (1), (2), it is possible to deter- 
mine the mean detonation velocity for an ideal gas. Assuming that 
i 0 << D 2, as is usually the case [1], we obtain 

DS = (k~_ l) p@T (k is the ratio of specific heats). (3) 

2. We will now discuss the proposed detonation model in re- 
lation to detonation in pipes with an oxidizer when the fuel is de- 
posited on the wails of the pipe in a film [2-4]. In this case the fol- 
lowing detonation wave mechanism can be visualized. The fuel is 
heated under the influence of the high temperature behind the shock 
wave; the fuel is vaporized (or possibly atomized) in the boundary 
layer, in which the reaction begins to proceed, The flow is accelerated 
to the point of turbnience, which sharply increases the rate of heat 
release and an explosion occurs, accompanied by total burnup in the 
expiosion zone. If: a) the explosion zone is small in comparison with 
the width of the detonation wave; b) the heat released outside the ex- 
plosion zone is negIeoted; c) incomplete combustion is neglected, it 
is possible to expect that the theoretical mean detonation velocity will 
coincide with the experimentally observed value? We note the equa- 
tion 

q = QTDpo. (4) 

Here Q is the heat per unit mass which would be released if 
the oxidizer and fuel were first mixed until a homogeneous mixture 
was obtained. If it is assumed that the reaction in the heterogeneous 

*The equations cited below can also be derived if assumption 
b) is not made, but in its place a somewhat different detonation wave 

mechanism is postulated, specifically, if it is assumed that secondary 
detonation and retonation waves are formed during the periodically 
occurring explosions and aI1 the chemical energy released is equally 
distributed among them. 
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mixture Occurs precisely in the same way as in a homogeneous mix-  
ture, on the basis of (3) and (4) for the velocity of a hetergeneous 
detonation we obtain the simple equation 

D = D o / I * 2 .  (5) 

where D o is the detonation velocity in the corresponding homogeneous 
mixture. For a mixture of  normal hydrocarbons and oxygen the detona- 
tion velocity is 2350 m/see  for a stoichiometrie composition and the 
max imum detonation velocity is 2650 m/see  [5]. In the corresponding 
case of a heterogeneous detonation the values of  the theoretical velo- 
city D are 1670 and 1870 m/see ,  respectively. Heterogeneous detona- 
tion velocities of 1720 and 1850 m/sec ,  respectively, have been ob- 
served experimentally [8, 4]. 

3. The detonation model considered in para 1 is, in a certain 
sense, limiting. Suppose that in the detonation wave zone n identical 
point explosions occur. In this case it is natural to take hypothesis (2) 
for that section where the last explosion with respect to location in the 
detonation wave occurs. Using the same reasoning as before, we arrive 
at the following va lue  for the detonation velocity: 

D = / 2 n - -  I~ ~Do. 
\ 2~ / (6) 

As n -) .o, this model approaches the classical model.  
The author is grateful to G, I. Barenblatt and V. F. Komov for 

useful discussion. 
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